
119Law Text Culture Vol 23 20190

Against the Power of Algorithms 
Closing, Literate Programming, 

and Source Code Critique

Markus Krajewski

1 Finnish, White, Male, Rural Resident Putting an 
Algorithm on Trial

Some algorithms know more than we think they would know at 
certain moments: the notorious examples range from superior, hidden 
knowledge to explicit oppression. A famous example is one of a large 
American retail chain that knew of a teenage customer’s pregnancy 
long before her own father because of the goods in her online shopping 
cart (Mayer-Schönberger et al 2013: 57-58). In the context of so-
called predictive policing, authorities pretend to know the next crime 
scene even before the crime is committed (Fry 2018: 144 ff.). And 
finally, criticism of Google’s Page Rank algorithm continues: as Safiya 
Noble observes in her book Algorithms of Oppression, its design is based 
on an intricate series of racist assumptions. In the juridical realm, 
algorithms that technically consist merely of decisions between 0 and 
1 on a basal level appear to play an increasing role in legal decision 
making. Sometimes algorithms themselves become ‘defendants’, as the 
following example from rural, sparsely populated Central Finland will 
show.



120

Markus Krajewski

In early July 2015, a man in Central Finland put some building 
materials into an online shopping cart. Normally the last step of 
purchase is concluded on the basis of a credit contract. This process is 
easily activated with a few clicks, especially when a small amount is 
involved, as was the case here. To his surprise, however, the customer 
was informed that the credit company involved in the purchase contract 
had rejected the transaction. After unsuccessful and repeated attempts 
to find out the reason for the rejection and receiving unsatisfactory 
explanations, the man decided to take Svea Economi AB, Filial i 
Finland, the credit monitoring company, to court. The only explanation 
that Svea gave was that the denial of purchase had been based on a credit 
score, but it did not provide any further information about the score’s 
exact function. Svea also revealed that they operated an algorithm 
that makes statistical decisions based on certain characteristics of the 
potential buyers, but that the algorithm did not take into account a 
consumer’s financial solvency. Seeking more clarity about the algorithm 
and details about its function, the rejected customer decided to sue Svea. 

The court case revealed the following: the credit monitoring service’s 
assessment criteria were based on certain characteristics, such as the 
consumer’s place of residence, gender, mother tongue and age. On 
the bases of population statistics and microcensus data, the algorithm 
then calculated the proportion of people in each group that had an 
unfavourable credit entry. Following a points system, it assigned a 
score to the individual consumer in that group. These points were then 
used to evaluate the probability of the consumer’s ability to service a 
credit. The more points the consumer ‘scored’, the more creditworthy 
he or she was deemed to be. Men received fewer points than women; 
people with Finnish as their mother tongue received fewer points than 
those with Swedish mother tongues; and the region in Central Finland 
assigned a poorer reputation to middle-aged, male Finnish speakers in 
terms of payment morale than to their male peers in the urban parts of 
Finland. It was on the basis of these categorisations that the plaintiff 
seemed to have been denied credit. 

The case reached the National Non-Discrimination and Equality 



121

Against the Power of Algorithms Closing, Literate Programming, 
and Source Code Critique

Tribunal of Finland. After two years of deliberation, the Tribunal 
decided to fine the defendant company, Svea, €100,000. It reasoned 
that the customer had not been treated as an individual in his 
creditworthiness, but only as a representative of a statistical profile 
based on discriminatory variables that Svea had applied to him. 
The defendant had been matched to all persons that fit his profile, 
i.e. men living in a given residential area, having a certain mother 
tongue and being of a certain age. Since the plaintiff fell into more 
than one category, the jury found that he was subjected to multiple 
discriminations. As a consequence of the Tribunal’s findings, Svea 
announced that it would no longer use ‘mother tongue’ as a criterion 
for assessing creditworthiness.1

The case revealed the algorithm as an independent, justiciable actor 
whose actions were not only confined to ‘inside’ the computer (in a 
program sequence full of bugs or crashes), but which also acted outside 
the machine in the world, giving rise to legal effects that were ‘faulty’: it 
was acting illegally. Although technically speaking the algorithm was 
functioning flawlessly, the Finnish tribunal prohibited its continued 
use: the algorithm was at fault, both legally and socially, because the 
software design had been based upon discriminatory premises. 

This case illustrates the opaqueness of algorithms’ operations: a 
customer is left in the dark about the criteria through which a credit 
decision is made; and only court decisions can enforce a disclosure of 
a proprietary software’s algorithm. Much of the conjured power of 
algorithms is thus based on the opacity or inscrutability of the specific 
actions that a software gradually applies and accrues. In the following 
sections, I outline the internal juridical character of algorithms, which 
resembles a mode of reasoning based on precedents: decisions are based 
on past decisions. I will then suggest some remedies to counter this 
power of algorithms. 



122

Markus Krajewski

2 Algorithms and Operational Chains: Social Constructs

There could hardly be anything less material in the physical sense of 
the term than an algorithm. Normally it has no gravity and is feather-
light. It consists of rules, or more precisely, a set of commands executed 
by a body.2 

In cultural history, algorithms have denoted a rule of calculation. 
Since the beginning of the High Middle Ages, calculus had replaced 
the prevalent practices of occidental calculating with technical devices, 
such as the abacus or the blackboard. Calculus favoured a sequence of 
instructions for action that would only allow scheduled mathematical 
operations to be carried out and posited an imaginary system of place 
values. But above all it proceeded without further technical aids, media or 
objects. The mathematician, geographer and astronomer, Abu Abdallah 
Muhammed ibn Musa al-Hwarizmi al-Magusi (approx. 780-850), 
often described as the founder of algebra, characterised the eponym of 
this procedure as al-Hwarizmi (= algoritmi): an algorithm denoted an 
immaterial instruction for action that involved an arithmetic operation 
consisting of a linear sequence of commands as its basis.3 An algorithm 
came to be regarded as a self-contained chain of commands or a chain 
of operations. This is commonly referred to as a code. 

Algorithms, however, could also be considered differently: in order 
to have an effect, a code requires a computer to execute it. Arguably no 
technique can only work on its own without the involvement of others. 
For this very reason it is worth emphasizing again that algorithms are 
social constructs. Their functions are always located at the interfaces 
between machines and humans. Not only do they process human inputs 
using data technology, but also in the vast majority of cases, software 
developers – i.e., humans – design the concrete algorithmic processes. 
At the same time, algorithms model their users, such as the Finnish 
borrower whose creditworthiness was modelled as the sum of points 
arising from individual ‘properties’, such as age, mother tongue, and 
so on.

The anthropologist André Leroi-Gourhan described algorithms as 
chains of operations, chaîne opératoire (1965/1980: 150 f., 275-280, 323). 



123

Against the Power of Algorithms Closing, Literate Programming, 
and Source Code Critique

In such chains, different actors are combined into a temporary unit of 
action that is only effective when objects, media and persons interact. 
An action only occurs if a chain of operations organises the interaction 
of a manual gesture (technique), a tool (l ’outil) and symbolic operations 
(language/code) and thereby initiates it.4 According to Latour’s actor-
network theory, chains of operations not only consist of technology 
and process, but are social constructs that have a social effect. They 
constitute and initiate the interaction of human and non-human actors 
(Latour 1991/2006, 2002). This characterisation of how a chain of 
operation is made and what it does applies well to algorithms: as a 
chain of operation in action, the execution of an algorithm generates 
not only virtual and social but also physical material effects; or as the 
case of the Finnish credit applicant has shown, it can also suppress 
them. In such an anthropological perspective, algorithms are chains 
of operations that transform certain ideas into concrete action by using 
tools or gestures. 

Lastly, algorithms also exert a legal effect. An algorithm is not only 
an object of a tribunal or a court case; it can act as a legal material itself. 
As the Finnish case demonstrates, algorithms ‘mediate and transform 
matters into distinctly legal matters’ (Kang and Kendall, Introduction: 6). 
Moreover, algorithms themselves are also ‘legal’ in their core. Their 
operation resembles a law-making process in which their focal operation 
and fundamental mediational practice is one of closing. The next section 
will discuss the process of closing in more detail.

3 The Power of Closing Operations

Why are algorithms so powerful? They appear oblique or undecipherable 
not only because they operate opaquely and it takes a court case to 
open the source code. Rather, their power stems from the material 
form of the code itself. A code is a medium whose core functionality 
requires a closure.

 Algorithms seem indiscernible and unintelligible because they 
are most commonly distributed to users as sealed, black-boxed packages. 
A single icon often serves as the gate to the software’s interface. 



124

Markus Krajewski

Algorithms perform most of their tasks hidden behind neatly designed 
graphical surfaces. Of course there are plausible reasons for this 
intended invisibility. Parts of the code may include trade secrets, 
commercially valuable routines, or they are bounded by intellectual 
property rights. The international software industry has an interest in 
keeping these knowledges indiscernible and has no reason to disclose 
the sources of their commercial products. However, alternatives do 
exist for many of the commercially distributed software packages, and 
they provide more or less the same functionalities (for a sample, one 
may wish to try alternativeto.net in order to find free substitutes for 
commonly used commercial software). Such alternatives often are 
open-source software projects and they can be easily accessed on large 
repositories like github.com. Open software packages obtained in this 
way are copied (or cloned, as the proper term has it) to the user’s local 
computer and accessed via an appropriate working environment, such 
as an IDE, which will be explained later in this text.

Figure 0: Code and comment coexist in the source code

For a long time, computer codes have been produced in an open 



125

Against the Power of Algorithms Closing, Literate Programming, 
and Source Code Critique

process in which software developers have deliberately written the codes 
and commented on them at the same time. Without being subjected or 
accountable to a single authority, such a practice has been marked by 
a collaboration of developers who have mutually commented on each 
others’ codes. This was not only done in large scale projects. Software 
developers habitually comment – especially on their own algorithms 
– in order to define a code’s current state (such as ‘@TODO: Improve 
this part of the operational chain…’), as well as to add personal notes 
(see fig. 0). Such commentaries may be necessary to understand the 
developer’s own code, because the function of a code fragment or the 
manner in which it operates is no longer self-explanatory after a time. 
This is because the communication between the developer and the 
computer is mediated and entails multiple steps. Human software 
developers work on their source code with a set of commands provided 
by a higher computer language, such as Java or C#. These languages are 
quite abstract, but still form a readable and comprehensible sequence 
of words (see figure 0). The source code, cannot yet be understood 
by computers, however; it is not yet executable by the machine and 
requires an intermediate step to transform these algorithms into a 
machine-readable binary code. Such a transformation is usually the 
result of an interpretive process performed by the so-called compiler 
program. Source code therefore constitutes a wholly new genre of 
textual code (or coded text): constituting a hybrid, it can be regarded 
either as a collection of sequential commands or operational chains 
(which the machine will perform during runtime) or, in conjunction 
with the developer’s commentaries, as a complete documentation of 
the task the machine is supposed to do if the process is initialized. The 
source code – literally both as a source and a code – contains the source 
of its own documentation, as well as the pre-form of the binary code. 

The overlap and correlation between code and commentary in 
this peculiar state results in the highest level of a code’s information 
density. Sources can be processed further with the help of specific 
utility programmes in an Integrated Development Environment (IDE, 
see fig. 1) in two ways: either by conversion into an executable file for 
machine use or by conversion into a comprehensible documentation 



126

Markus Krajewski

of the whole code, including commentaries and algorithms, which in 
effect represents a commentary on the process of codification itself. 
Both the algorithms and the commentaries evolve, whilst being deeply 
interwoven within the same file in the source code and distinguished 
only by certain tags and suffixes that identify their status. 

These processes of compiling and/or documenting resemble a 
closing of codes; in other words, a codification. Such a closure of a code 
inserts a kind of juridical structure at the level of software development. 
While compiling input files, i.e. interpreting the commands line by 
line, the compiler freezes the code at a certain stage, and it becomes 
inalterable. It is at this point that the compiler translates the human 
readable chain of commands into a binary code (0 and 1) that can then 
be executed by the machine. These codes might contain orders about 
routines provided by the computer language itself (for example, opening 
a window on the screen or issuing a message, such as ‘I prefer not to…’ 
in the terminal window are performed). Tools such as compilers or pre-
processors for documentation function as filters of the source code; they 
are not dissimilar to book editors. The compiler ignores the material 
that serves other purposes (for example, comments) and only selects 
those particular items necessary for the machine to process; while, vice 
versa, the documentation pre-processing tool uses the commentaries as 
the main text which are then illustrated by the commands.

The usage and meaning of the term ‘code’ are, of course, not 
restricted to computer coding. They operate in a wider realm of para-
legality. Historically, the term ‘code’ has been deeply rooted in legal 
history, particularly in civil law jurisdictions (the Code Napoleon, codes 
of conduct, etc.). Code sounds somehow less determinate than statute 
or das Gesetz; codes formulate claims to something different, perhaps 
less sovereign, than state-enforced Law.

It is in this sense that computer codes have a juridical character, even 
if they derive from an open-source software culture of commenting 
and commentaries. In legal history, it is well known that the culture of 
commenting is not antithetical to codification and juridification. The 
opposite is rather the case: legal codes often derive from nothing other 



127

Against the Power of Algorithms Closing, Literate Programming, 
and Source Code Critique

than comments and commentaries. The famous Digesta that laid the 
ground for Western law drew its material from Roman jurists who had 
communicated to each other by commenting on cases. The large amount 
of these commentaries was eventually ‘digested’ and compiled in a book 
- a codex - from which the word ‘code’ derives. The Byzantine Emperor 
Justinian appointed an editor, Tribonian, who guided the process of 
converting comments into a single code by selecting certain data from 
the mass of text. Through this procedure of forming a book out of the 
abundance of commentaries, the Digesta established an inalterable 
legal text, as well as an ever-changing commentary to accompany it. 
The text which found its way into a codex between the two covers of 
a book literally becomes closed from that moment of entry; similarly, 
a compiler closes the source code. It can no longer be altered and thus 
ends late antiquity’s non-hierarchical form of legal text generation and 
its incessant chains of comments without an ultimate reference. Such a 
closure of codes – later called codification – ends the practice of codes 
that appear and disappear according to their use. 

4 Becoming Sovereign (Again): Source Code Critique

My initial question was: how could one overcome the issue of a code’s 
opaqueness on a practical level?5 What are the media and means 
that could be mobilised towards this aim? My suggestion may sound 
speculative, yet it addresses a code’s inherent roots: I would like to 
propose a methodological framework following the idea of a source code 
critique. The term is a mot-de-valise from ‘source code’ and the helpful 
scholarly ‘source criticism’ proven in historiography (Saxer 2014: 376 
ff.). Conceptually it involves, on the one hand, the field of source code 
development; on the other hand, it requires a critical reading of codes, 
the dynamics and changeability of which are to be understood as 
historical sources that require further classification and commentary. 

I conceive source code critique less as a new research direction, as it 
was proposed about a decade ago by the so-called Critical Code Studies 
as a programmatic separation from the so-called Software Studies in 
order to study code as a text through hermeneutic procedures (Marino 



128

Markus Krajewski

2006, 2010). It is also less concerned with drawing a new branch into 
the critique génétique in order to extend philological processes concerned 
with critical editions of books to software.6 Rather, it is a matter of 
(further) developing a methodology on a pragmatic level that would 
allow a software code to not only be executed and applied, but also to be 
subjected to critical readings. The aim would be to make the algorithms 
themselves readable through extensive comments, reflections, references 
and, if necessary, modifications. This methodology does not only 
serve a didactic purpose, insofar as an understanding of programme 
structures could strengthen digital literacy, which is sorely needed in 
the humanities and jurisprudence. As in the transmission of elaborate 
reading skills using classical academic methods, such as discourse 
analysis, deconstruction or hermeneutics, the overarching goal is to 
foster a critical faculty that would be able to understand, disclose, 
classify, contextualize and explain individual programming steps in 
order to counter the much invoked power of algorithms. The critique 
would aim at the shared software code itself. Digitally literate users 
– not unlike legal scholars in Justinian times – could insert their 
understanding of the code by commenting on it, explaining it to other 
readers, discussing certain problems, or hinting at crucial steps in the 
operational chain. 

As distinct from critical code studies, this proposal of a source code 
critique does not call for checking programme structures and command 
lines for eventual metaphors, figurative speech or ambivalent meanings. 
Rather it suggests an extensive interplay of code and commentary in 
order to make the algorithms themselves more transparent and thus 
more comprehensible, i.e. to prepare them by means of explanatory 
comments in such a way that interventions and modifications in the 
program flow can be facilitated (cf. the commentary in the main window 
of fig. 0). The critical acts in the method of source code critique consist 
of an elaborate reading of the source code as a first step, and in the 
second step of commenting on the operational chain, and, finally, if 
needed, of modifying the algorithms by implementing alternatives to 
the existing code and providing new versions of the software package. 



129

Against the Power of Algorithms Closing, Literate Programming, 
and Source Code Critique

One could object that these skills are mostly only found among 
software developers and computer scientists. I would argue that it is 
necessary to acquire a basic understanding of code. As ‘digital natives’ 
who have been taught an appropriate level of digital literacy at school 
start to arrive in the halls of higher education, the cultural technique 
of coding presents us with the similar need of training as the cultural 
techniques of reading and writing on an academically advanced level. 
You do not have to be a literature scholar in order to read a novel. You 
do not have to be a computer scientist in order to understand and 
critically read software code. You only have to learn and acquire basic 
digital skills at college, or autodidactically by studying online tutorials, 
if you have not learned it already at school. In order to counter the 
opacity of code, source code critique as a methodological approach 
might be added to the curriculum, together with the elaborate reading 
and writing skills that are natural parts of today’s academic education. 
Gradually, mere users of software may turn into literate readers of 
software with the ability to understand and modify the code; most 
inevitably they will also become programmers. 

Figure 1: In an Integrated Development Environment (IDE) code, 
commentaries, version control and many other functions are combined in 

order to help facilitate comprehensive coding 



130

Markus Krajewski

 The idea of software development as a kind of philological 
critique is by no means new. It has been developed by none other than 
the author of the epochal programming bible, The Art of Computer 
Programming (1968-2025), by Donald E. Knuth. With the ambiguous 
title ‘Literate Programming’, Knuth (1984) proposed to write the source 
code in such a way that it would not only include the commands in the 
respective programming language, but also the individual instructions 
and program structures. These would be intensively described and 
commented on by the developer at the same time. The source code 
would thus contain the individual commands and data structures 
together with their documentation or philological apparatus. In this 
way, algorithms could become transparent and easier to understand, 
not only for their authors, but also for later readers and editors. A 
code in the sense of literate programming would be transformed into 
a text that would be readable for comprehension. The effects of such 
literate programming could be remarkable: the close reading of an 
algorithm in a higher programming language becomes an almost 
textual-philological procedure, which could expose at any moment 
the state of known knowledge, its references, its hidden structures, its 
steps of abstraction, and the flow of data in time. They would make 
the algorithm more transparent and comprehensible. The debugging 
of an algorithm in this sense would then be nothing more than a deep 
hermeneutical reading of what is written in the code in order to find 
possible errors, the correction of which would make the text ‘run’ again. 

Law, literature, code and their critiques are, of course, structurally 
more closely connected than a first glance would imply: being gripped 
by a literary text can either be followed by indulgence, or literary insights 
can be used to analyse how this feeling of being gripped was an effect of 
authorial design. Understanding coding as a cultural technique makes 
it possible to critically counter the subjection to algorithmic structures 
and software-implemented affectations and affectedness. It opens up 
a view of algorithms in their constructedness. In order to recognise 
how exactly a user is used by the software, it remains necessary to be 
able to decipher, comprehend and critically uncover the design and 
construction of an algorithm.



131

Against the Power of Algorithms Closing, Literate Programming, 
and Source Code Critique

How can such a critical reading be achieved? This is also a question 
about a medium; in this case, it refers to the so-called Integrated 
Development Environment (IDE), which serves as the central medium 
of criticism, i.e. a programming environment that combines all 
important tools for analysis, research, error tracing, code production and 
distribution (see fig. 1). But an IDE is not just a place where mistakes 
are corrected. It is also the place of discourse, editing, and proofreading 
of the code (not necessarily by another person), insofar as comments 
are inserted here, which are then further processed to document the 
algorithms. It is not only the place where the coherence, effectiveness 
or elegance of the code is checked and improved. IDE is also the place 
where one’s own modifications to the software are recorded using 
version control commands, or from where other modified parts of the 
programme are inserted into one’s own local files. These processes 
of file exchange are easily made possible by the fact that each IDE 
(like Eclipse or NetBeans or IntelliJ IDEA) is linked to (de-)centralised 
software repositories like github.com, where developers can obtain 
other (open) source software packages and make their own code 
modifications available to these repositories. The developer becomes 
both a globally connected reader and a writer of software code at the 
same time. An IDE therefore serves as a decentralized distribution 
platform where the user’s position constantly oscillates between being 
a creative developer and a critical reader. Whereas the programmer/
critic first retraces the code in its capillary ramifications in order to 
relate it to the overall programme (a hermeneutic operation), in the 
next moment he/she becomes the annotating and commenting reader 
in order not to lose the insights gained. The reader simultaneously 
becomes an intervening writer, true to the old legal-historical maxim 
that commentary is the basic form of both text and code (Vismann & 
Krajewski 2007). 

An IDE serves as a media milieu for coding, providing an 
environment in which algorithms thrive, are produced and optimized, 
and finally made comprehensible, understandable and transparent 
within the framework of a source code critique. Source code critique 
serves as the key skill for opening, processing, and deciphering codes 



132

Markus Krajewski

- not only in the context of the Finnish court case, but for almost all 
purposes of digital criticism.

Endnotes

1. The details of the case can be accessed here: <www.yvtltk.fi/material/
attachments/ytaltk/tapausselosteet/45LI2c6dD/YVTltk-tapausseloste-
_21.3.2018-luotto-moniperusteinen_syrjinta-S-en_2.pdf>.

2. For a cultural historical genealogy of the command as an act and process, 
see Canetti (1960/2000). The Nobel Laureate discusses the impulse of 
fleeing as the primordial instance of the command.

3. Al-Hwarizmi’s treatise was later latinized by Leonardo Pisano (Fibonacci) 
in his Liber Abaci 1202.

4. For a derivation and adaptation of the concept of the chain of operations 
in media theory and cultural techniques research, see the critique of 
Schüttpelz (2008); Heilmann (2016), as well as the subtle and insightful 
critique of the critique by Schüttpelz (2017).

5. The argument here refers only to classical algorithmic designs where the 
programme is strictly deterministic, i.e. it always produces the same output, 
and the IDE allows the algorithm to be traced at any time whilst the 
programme runs. In contrast, so called deep -earning algorithms are - by 
design - mostly not comprehensible to the software developers themselves. 
Their opacity produces a situation where algorithms intentionally are and 
act out of control. This aspect of the so-called algorithmic governance is 
not discussed here. For a survey of legal concerns within the realm of 
algorithmic governance see, e.g. Coglianese and Lehr (2019). 

6. See for first approaches Hiller (2014), for philological editions and the 
critique génétique more generally, see Grésillon (1999).

References

Belliger A and D J Krieger eds 2006 ANThology. Ein einführendes Handbuch 
zur Akteur-Netzwerk-Theorie transcript Verlag Bielefeld

Canetti E 1960/2000 Masse und Macht Fischer Taschenbuch Verlag Frankfurt 
am Main

Coglianese C and D Lehr 2019 ‘Transparency and Algorithmic Governance’ 
Administrative Law Review 71: 1-56 



133

Against the Power of Algorithms Closing, Literate Programming, 
and Source Code Critique

Fry H 2018 Hello world. Being human in the age of algorithms W.W. Norton & 
Company New York

Grésillon A 1999 Literarische Handschriften. Einführung in die critique génétique 
Peter Lang Verlag Bern

Heilmann T 2016 ‘Zur Vorgängigkeit der Operationskette in der 
Medienwissenschaft und bei Leroi-Gourhan’ Internationales Jahrbuch für 
Medienphilosophie 2/1: 7-30

Hiller M 2014 ‘Diskurs/Signal (II). Prolegomena zu einer Philologie digitaler 
Quelltexte’ editio. Internationales Jahrbuch für Editionswissenschaft 28: 
192-212

Kneer G, M Schroer and E Schüttpelz eds 2008 Bruno Latours Kollektive 
Suhrkamp Verlag Frankfurt am Main

Knuth D E 1984 ‘Literate Programming’ The Computer Journal 27: 97-111
Latour B 1991/2006 ‘Technologie ist stabilisierte Gesellschaft’ in Belliger 

et al 2006: 369-397
Latour B 2002 Die Hoffnung der Pandora. Untersuchungen zur Wirklichkeit der 

Wissenschaft Suhrkamp Verlag Frankfurt am Main
Leroi-Gourhan A 1965/1980 Hand und Wort. Die Evolution von Technik, 

Sprache und Kunst Suhrkamp Verlag Frankfurt am Main
Marino M C 2006 Critical Code Studies <electronicbookreview.com/essay/

critical-code-studies/>
Marino M C 2010 Critical Code Studies and the electronic book review: An 

Introduction <http://electronicbookreview.com>
Mayer-Schönberger V and Cukier K 2013 Big data. A revolution that will 

transform how we live, work, and think Houghton Mifflin Harcourt Boston
Saxer D 2014 Die Schärfung des Quellenblicks. Forschungspraktiken in der 

Geschichtswissenschaft 1840–1914 De Gruyter Oldenbourg München
Schüttpelz E 2008 ‘Der Punkt des Archimedes: Einige Schwierigkeiten des 

Denkes in Operationsketten’ in Kneer et al 2008: 234-58
Schüttpelz E 2017 ‘Die Erfindung der Twelve-Inch der Homo Sapiens und Till 

Heilmanns Kommentar zur Priorität der Operationskette’ Internationales 
Jahrbuch für Medienphilosophie 3/1: 217-34

Vismann C and Krajewski M 2007 ‘Computer-Juridisms’ Grey Room. 
Architecture, Art, Media, Politics 8/29: 90-109


